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Abstract—We present a highly scalable, parallel implementa-
tion of first-principles electron dynamics coupled with molecular
dynamics (MD). By using optimized kernels, network topology
aware communication, and by fully distributing all terms in the
time-dependent Kohn-Sham equation, we demonstrate unprece-
dented time to solution for disordered aluminum systems of 2,000
atoms (22,000 electrons) and 5,400 atoms (59,400 electrons), with
wall clock time as low as 7.5 seconds per MD time step. Despite
a significant amount of non-local communication required in
every iteration, we achieved excellent strong scaling and sustained
performance on the Sequoia Blue Gene/Q supercomputer at
LLNL. We obtained up to 59% of the theoretical sustained peak
performance on 16,384 nodes and performance of 8.75 Petaflop/s
(43% of theoretical peak) on the full 98,304 node machine
(1,572,864 cores). Scalable explicit electron dynamics allows for
the study of phenomena beyond the reach of standard first-
principles MD, in particular, materials subject to strong or rapid
perturbations, such as pulsed electromagnetic radiation, particle
irradiation, or strong electric currents.

I. OVERVIEW

In order to gain fundamental understanding of the physics
and chemistry of materials and to achieve targeted, bottom-
up materials design, we need to be able to accurately model
systems at the atomic scale from first principles. Using high-
performance computing resources, it is now possible to sim-
ulate quantum systems of unprecedented size and complexity.
This has enabled the study of previously inaccessible phenom-
ena in important areas such as renewable energy generation
and storage, drug discovery, and catalysis, to name just a
few [1]. Despite many remarkable achievements, one key
limitation of nearly all materials simulations to date has been
the assumption of decoupling between the electronic and
nuclear degrees of freedom (see Fig. 1). In ab initio molecular
dynamics (AIMD) for instance, nuclei and electrons are treated
separately by moving the nuclei classically under the forces
computed from the corresponding electronic ground state for
that configuration of atoms [2]. While these approximations
work well for many systems, they are unable to accurately
model systems where electronic and nuclear time scales are
not well separated, such as the response of matter to photons
or radiation. To capture these phenomena, direct simulation of
electron dynamics is needed.

First-principles simulations of electron dynamics have long
been an area of research interest. In 1996 Yabana and Bertsch
studied the time-resolved response to a short electromagnetic
pulse, elucidating the interplay of real-time electron dynamics

and optical absorption for molecules and atomic clusters [3].
Electron dynamics simulations have since been applied to
study a number of important scientific problems in atomic
systems, including response coefficients such as optical activ-
ity [4], [5], hyperpolarizabilities [6], and Raman tensors [7].
The method was extended to calculate the dielectric response
of crystalline systems [8] and can be used to describe the
response of electrons to strong perturbations, such as the
interaction of matter with laser fields [9]. This has given
insight into high-harmonic generation [10], electron photoe-
mission [11], optimal control of quantum systems [12], optical
breakdown [13], multiphoton-absorption [14], and molecular
conductance [15]–[17].

An efficient, scalable, parallel implementation to simulate
electron dynamics will allow these types of calculations to
be extended to larger, more complex systems such as inter-
faces and surfaces. More significantly, however, it enables
molecular dynamics (MD) simulations wherein electrons and
nuclei are evolved in time simultaneously, to capture phe-
nomena such as photoisomerization [18] and dissociation due
to strong fields [10], molecular collisions [19], and elec-
tronic stopping [20]. Such simulations must necessarily use
significantly smaller time steps than AIMD to capture fast
electronic response, requiring a time to solution per MD
iteration of seconds rather than minutes. In this paper, we
present the first such implementation of coupled electron-
nuclei dynamics capable of simulating thousands of atoms
and tens of thousands of electrons with sub-minute iteration
times. We also demonstrate excellent strong scaling efficiency
up to 1.5 million compute cores and sustained performance of
8.75 Petaflop/s on the Sequoia Blue Gene/Q machine.

Fig. 1. Ladder of approximations for molecular dynamics (MD). As we move
down the ladder, computations include more physical effects and become more
expensive. Thus, the size of the system that can be studied becomes smaller
and the time scales shorter.
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II. ELECTRON DYNAMICS: CURRENT STATE OF THE ART

While quantum mechanics provides a very precise descrip-
tion of electrons via the Schrödinger’s equation, the exponen-
tial cost of solving it exactly makes computational simulations
prohibitive for more than a few electrons. For practical calcu-
lations, approximations are required. For large scale systems,
the method of choice is density functional theory (DFT) [21],
[22] with an approximated semi-local exchange and correlation
functional. While DFT describes electrons in the ground
state, time-dependent DFT (TDDFT) [23], [24] is required
to simulate excited electrons. The linear response formulation
of TDDFT has been widely used, e.g. to obtain excitation
energies and other frequency-dependent properties [25]. For
electron dynamics, the real-time formulation of TDDFT can
account for response to strong perturbations, as is required by
the application described in this paper . It is possible to go
beyond TDDFT to achieve a more accurate description of the
electronic degrees of freedom, for example by using the time-
dependent Bethe-Salpeter equation [26] or the time-dependent
coupled cluster method [27]. Unfortunately these approaches
are considerably more computationally expensive, and at this
moment are not suited for large-scale simulations.

Although the density functional approach reduces the ex-
ponential complexity of the Schrödinger equation to a more
tractable O(N3), where N is the total number of electrons,
it remains very computationally demanding, limiting most
researchers to the study of hundreds of atoms. Moreover, it
does not remove the inherent non-locality of most quantum
systems. In a parallel simulation on a supercomputer, this
property translates into long-range communication across the
full machine, requiring careful data management and keen
awareness of the communication topology in order to achieve
scalability.

At the same time, the ultrafast time scales of electron
dynamics require very short time steps in the simulations and
oftentimes large number of simulated particles (atoms and
electrons). As a result, researchers have started to focus on
high efficiency and large-scale parallelization. The develop-
ment of an efficient, real-time, electron dynamics simulation
was pioneered by the developers of the Octopus code [28],
[29], which is based on a real-space grid implementation
of DFT/TDDFT and combines parallelization in states with
parallelization over real-space domains. Octopus has been
shown to scale well up to 32,768 nodes on a Blue Gene/P
system for a simulation of a molecule composed of 5,879
atoms (15,825 valence electrons), achieving approximately
10 % of peak performance [30]. Scaling to more processors
was limited by the cost of solving the Poisson equation [31],
leading to the development of more scalable Poisson solvers
[32]. More recent versions of the software feature reduced
memory requirements and optimized parallel data distributions
[33] that have allowed to predict the light absorption of large
photosynthetic complexes with thousands of atoms [34].

In 2014, Noda et al. presented a parallel, real-time, real-
space implementation of TDDFT running on the K com-
puter at the RIKEN Advanced Institute for Computational
Science [35]. To test their implementation, they simulated a

molecular crystal of C60 fullerenes composed of 1,920 atoms
(7,680 valence electrons). They achieved good scaling up to
1,920 nodes, but runs at greater computational scales exhibited
a significant increase in the communication cost. In their
largest run on 7,920 nodes (61,440 cores), communication ac-
counted for 70% of the execution time. The overall throughput
for that run was 7% of the theoretical peak performance.

We note that these last two approaches only consider
integration in time of the electrons while keeping the nuclei
frozen. While the integration of the nuclear equations of
motions takes a negligible amount of time, the calculation of
the forces and the recalculation of the structure factors and
other objects related to the electron-nuclei interaction, that
depend on the atomic positions, incur a significant additional
cost.

III. OPTIMIZING QB@LL FOR PERFORMANCE AND
SCALABILITY

In this work we use our novel, highly-scalable implemen-
tation to address the long-standing problem of electron dc-
conductivity at extreme current densities [36]. In this regime,
it is necessary to directly simulate the quantum dynamics of
scattering of each individual electron that participates in the
electric current [37]. This is the first time that this challenging
goal has been accomplished in an atomistic calculation for
a bulk material. Section IV describes in more detail the
specifics and novelty of the scientific application. Since the
simulations require large supercells, with 1,000 to 5,000 atoms
to represent thermal disorder, this problem presents significant
new challenges that were addressed by a combination of
new techniques and implementation improvements that will
be described in the following.

To treat such large systems, we implemented TDDFT in
Qb@ll (“cue ball”) [38], a redesigned version of the DFT
code, Qbox [39]. Qbox was originally developed at Lawrence
Livermore National Laboratory to achieve excellent scalability
and peak performance on machines such as Blue Gene/L [40]–
[42]. Written in C++, the code uses MPI to carry out com-
munication between compute nodes and a mix of OpenMP
and threaded kernels to efficiently utilize all floating-point
units on each node. Parallel linear algebra is handled by
the ScaLAPACK library [43], and one-dimensional Fourier
transforms are computed with FFTW [44] or ESSL [45].
Norm-conserving non-local pseudopotentials [46] were used
in separable Kleinman-Bylander form [47]. The viability of an
explicit time-integrator within Qb@ll has already been demon-
strated [48] and performance results with a stopping power
calculation involving 1,600 gold atoms (27,200 electrons) were
shown [49].

A. Electron dynamics algorithm

In real-time TDDFT, the electrons are represented by a set
of single-particle orbitals {ϕi(~r, t)}. The real-time dynamics
of any given state ϕi is described by the time-dependent Kohn-
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Sham equation,

i~
∂

∂t
ϕi(~r, t) =

{
− ~2

2m
∇2 + Vext(~r, t) + VHXC[n(~r, t)]

}
︸ ︷︷ ︸

Ĥ[n(~r,t)]

ϕi(~r, t),

(1)
where t is time and Vext is the external electrostatic Coulomb
potential created by the ions. VHXC[n(~r, t)] is the mean-field
contribution to the potential created by the other electrons
and includes their electrostatic Hartree interaction and a term
derived from quantum-mechanical exchange and correlation.
The operator on the right-hand side is collectively known as
the instantaneous Kohn-Sham Hamiltonian, Ĥ[n], and depends
on the electronic density n(~r, t) =

∑
i |ϕi(~r, t)|2. The real-

time propagation of Eq. (1) therefore involves at least two non-
trivial steps: the calculation of the Kohn-Sham Hamiltonian
from the density, and the application of this operator to the
wave function degrees of freedom.

The Kohn-Sham formalism requires the set of or-
bitals {ϕi(~r, t)} to be orthogonal to each other. In AIMD
methods such as Born-Oppenheimer or Car-Parrinello [50],
orthogonality of the orbitals is not preserved and has to
be imposed at each iteration through an expensive O(N3)
procedure that mixes different orbitals [51], [52]. In the context
of parallel computing, this requires large-scale linear algebra
operations that involve all nodes [40]. In electron dynamics,
by contrast, Eq. (1) preserves the orthogonality of the ϕi

set during the propagation [53]. By choosing an adequate
propagator, this property is retained automatically by the nu-
merical implementation. The absence of an orthogonalization
step makes the overall computational cost lower, but more
importantly, less inter-processor communication is required,
as most operations involve communication along the columns
or rows of the process grid.

To do the time integration of the electrons, we implemented
both, a fourth-order Runge-Kutta propagator [48] as well as
an enforced time reversal symmetry (ETRS) algorithm [10].
The latter propagator is designed specifically for Schrödinger
type equations. The propagation of an orbital from time t to
time t + ∆t is given by

ϕi(~r, t + ∆t) = exp
(
−i

∆t

2~
Ĥ [n(~r, t + ∆t)]

)
× exp

(
−i

∆t

2~
Ĥ [n(~r, t)]

)
ϕi(~r, t) .

(2)

As Eq. (1) is non-linear, this propagator becomes implicit;
while the second exponential can be readily applied, the first
one requires the Hamiltonian operator at time t + ∆t which
depends, through the density, on the orbitals that we want to
calculate. We first obtain an approximation for n(~r, t+∆t) by
propagating the full step with the exponential of Ĥ[n(~r, t)].
This can be considered as a two-step self-consistent iteration.
It is possible to introduce a more sophisticated algorithm with
a variable number of iterations, that ensures convergence at
every step. But we have found this is not required in practice,
as the time step is sufficiently small in comparison with the
strength of the perturbation for most simulations.

For the calculation of the exponential of the Hamiltonian in
Eq. (2), we found that a simple Taylor expansion truncated to
fourth order provides a good trade-off between accuracy and
computational cost, even when compared to more sophisti-
cated approximations based on Chebyshev polynomials or the
Lanczos procedure [10].

Both Runge-Kutta and ETRS propagators are stable over
thousands of time steps. While the fourth-order Runge-Kutta
has a shorter wall clock time per MD time step, the ETRS
propagator is stable over time steps that are twice as large,
making the time to solution of the two methods roughly
equivalent. As ETRS is time-reversible by construction, it has
better conservation of the total energy, electronic charge, and
orbital orthogonality.

B. Data layout and communication

Like Qbox, Qb@ll uses a two-dimensional logical process
grid to distribute data and limit communication scope (see
Fig. 2). Electronic orbitals are distributed across process
columns, with their plane-wave basis coefficients distributed
across the process rows. This structure was instrumental in the
excellent strong scalability that resulted in the 2006 Gordon
Bell Award [54] for peak performance.

Fig. 2. The Qb@ll MPI process grid. The task ordering is column-major,
with each column owning a fraction of the electronic orbitals φ( ~G) and a
copy of the electronic density in reciprocal space ρ( ~G). All tasks also store
a copy of the current ionic positions RI .

Moving from adiabatic MD to non-adiabatic MD requires
a significant increase in the overall scalability of the code;
removing the need to reorthogonalize the orbitals at every
iteration (adiabatic AIMD additionally requires to perform a
subspace diagonalization at each step to recompute occupancy
in the case of metals) eliminates a substantial amount of
communication, but exposes numerous terms with limited
scalability.

For example, because the number of local electronic orbitals
on a given process column is typically much larger than one,
Qbox computes functions of charge density and ionic positions
redundantly on all process columns and tasks, respectively, his-
torically with negligible additional cost. At the extreme strong
scaling limit, however, such operations become a significant
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fraction of the total time. To improve scalability in Qb@ll,
we distributed density-dependent work such as the exchange-
correlation potential calculation over process columns, with
each column computing an equal amount and then accumu-
lating the results with a subcommunicator MPI_Allreduce
over process rows. Terms that depend on both ionic positions
and plane waves, such as the structure factor, were similarly
distributed, while double loops (O(N2)) over ionic positions
such as the electrostatic repulsion were spread across both
process rows and columns.

We also explored reducing time to solution by distributing
computation of the intermediate Anl matrix used to store the
projectors of the non-local pseudopotential before they are
applied to the electronic orbitals,

Anl = (−i)le
~Gj ·~RI wl(~Gj)vl(~Gj), (3)

where ~RI is the position of the nuclei, ~Gj is the local plane
wave basis point, wl is the projector of angular momentum,
l and vl is the non-local potential. Because the total number
of projectors is proportional to the total number of atoms,
storing the full projection matrix even, for just the local
basis points, becomes prohibitive with thousands of atoms.
Instead, a blocked loop is used to limit the local size of
Anl, with all tasks computing the contribution for their local
basis points from all atoms in fixed-size pieces (for this work,
the block size was 256 atoms). Historically, this calculation
has been a small fraction of the total DFT iteration loop
time. However, per Amdahl’s Law, this unscalable term will
eventually dominate. To mitigate this, we implemented the
option to distribute the blocked loop across columns, with
each process broadcasting Anl corresponding to its block of
atoms across its row subcommunicator in turn. This has the
added benefit of allowing persistent storage of Anl across
multiple evaluations of the Hamiltonian, updating it only when
the atom (nuclei) positions change. (Some electron dynamics
calculations are done with fixed nuclei.) We found that trading
computation for communication in this way can be favorable
to time to solution, provided communication bandwidth is
sufficient.

C. Mapping MPI tasks onto the 5D torus

The heavy communication requirements of Qb@ll and the
five-dimensional torus topology of Blue Gene/Q make the per-
formance of Qb@ll highly sensitive to the mapping or layout
of MPI tasks on the torus. Communication performance of the
code is affected both by contention for injection bandwidth and
for link bandwidth. By default, the job scheduler assigns MPI
tasks to nodes and cores using a scheme called ‘ABCDET’ in
which tasks are placed on the cores within a node first and then
along the ‘E’ dimension, then the ‘D’ dimension and so on.
However, this default mapping tends to scale poorly because of
resource contention in the injection FIFOs and network links.
Finding the optimal mapping is NP-hard and even developing
good heuristics is complicated by the fact that the shape of
the 5D partition allocated for a job can change from one job
to another, especially at lower node counts.

In order to improve the communication characteristics and
overall performance of the code, we investigated using other
layouts such as ‘CTEABD’ ‘ATEBCD’ and ‘BEACTD’ All of
these spread consecutive MPI tasks to different nodes instead
of placing them on different cores of the same node. We also
used a Python based task mapping tool called Rubik [55] to
improve link bandwidth utilization by placing communication
pairs so that they are separated by links in multiple directions
of the torus. We found that suboptimal task mapping had a
substantial impact on performance, as discussed in Section VI.

D. An optimized threaded xGEMM kernel for Blue Gene/Q

Because the majority of the non-local pseudopotential eval-
uation relies upon matrix multiplication, an efficient xGEMM
kernel is essential. While the performance of matrix multipli-
cation is contingent upon carefully leveraging the hardware
features relevant at each level of the memory hierarchy,
the performance rewards reaped and the complexity required
increases as one approaches the highest (smallest) levels of
the memory pyramid. Correspondingly, the structure of the
implementation is most coherently described from the top
down (i.e., floating point unit to main memory).

The inner kernel of matrix-multiply is constructed as an
outer product formulation with the largest surface-to-volume
ratio possible, in order to reduce bandwidth requirements,
while sparing enough registers to cover expected latencies.
Here, the DGEMM kernel is an 8×8 outer product with the C
matrix occupying 16 (4-way) SIMD registers in a 2×8 register
grid. Conformal to this, the A matrix component occupies a
2×1 vector register slice (logically 8×1) while the B matrix
occupies a 1×8 set of registers (logically also 1×8). The A
and B matrices are not treated symmetrically, as the A matrix
elements are loaded component-wise (e.g., {a1, a2, a3, a4})
while the B matrix components are loaded redundantly (splat-
ted) into the register file (e.g., {bx, bx, bx, bx}). This differ-
ential treatment stems from the fact that there are a limited
number of cross-instructions in the QPX instruction set and
the component interactions required in an outer product style
calculation (preferable for reasons of bandwidth consumption
and latency scheduling) indicate this treatment. Analogously,
the core of the ZGEMM routine utilizes an 8 × 4 (complex)
outer product with the C matrix occupying 16 SIMD registers
in a 4×4 register grid.

In both DGEMM and ZGEMM, the elements of C are
loaded in a manner conformal to the A matrix. For the
operands that experience reuse, A and B, these alignment
requirements are met through data reformatting, which is
standard practice in this area. The QPX unit employs a rich set
of load and permute instructions that allow this reformatting
step (which often includes a multi-level transpose) to be done
efficiently and, from the perspective of the assembly language
required, cleanly.

The next step is to consider the interface between the reg-
ister file and the multiple cache levels. Consider the ZGEMM
kernel. Viewed as an isolated unit of computation the kernel
must load 12 complex values over the course of 32 cycles,
equating to 6 bytes/cycle, which the L2 cache of Blue Gene/Q
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can easily furnish. While the computational kernel code is
scheduled so as to tolerate a great deal of latency, this is
only required when new data streams are being initiated. After
a stream has been established, the L1 prefetch cache (L1P)
reduces the effective latency from 82 to 24 cycles, below the
latency tolerance of the kernel routine even when it is run
on a single thread. Thus, our implementation differs from the
traditional design insofar as we do not rely upon the high-
bandwidth, low-latency characteristics of the L1D cache to
realize performance.

The use of multiple threads is well-known to improve
latency tolerance. In the work presented here, we utilize the
SMT threads to reduce bandwidth demand. Consider four
threads, each executing the 8x8 DGEMM inner kernel. While
each thread, independently, would require 8 bytes/cycle to
proceed at peak speed, if one views these outer products on
a 2x2 grid wherein the A and B matrices are each two-
way shared, the bandwidth demands are cut in half. Novel
enhancements, such as mutual (partner) prefetch [56], using
the L1D cache as a coordination area, were used to enforce this
behavior by implicitly synchronizing cores as well as reducing,
by the elimination of redundancy, the total number of prefetch
instructions issued.

The matrix multiplication routines, outlined above, execute
at a high percentage of peak on the Blue Gene/Q system.
For example, the ZGEMM implementation processes some of
the matrices of interest in Qb@ll at over 95% of peak when
using 64 threads per node. Our design differs from traditional
designs as regards its treatment of the L1D cache, the use of
mutual prefetching, and general “over-engineering” to reduce
bandwidth requirements and increase latency tolerance to lev-
els that the system is more than capable of delivering, allowing
the code to run at near peak rates across a wide spectrum
of matrix sizes and thread counts. Specific improvements
for the work presented, over previous realizations of matrix-
multiplication kernels on Blue Gene/Q [57], include low-level
improvements regarding the timing of store instructions and
multi-level blocking to effectively deal with the extreme aspect
ratios of some of the matrices of interest.

IV. APPLICATION: DC-CONDUCTIVITY IN DISORDERED
ALUMINUM

In this section we describe an approach to compute electrical
dc-conductivity by direct simulation of a current in a metallic
system, including the reaction of the lattice atoms. The specific
physical systems we selected in order to measure performance
are two supercells of 2,000 and 5,400 aluminum atoms, with
22,000 to 59,400 electrons respectively, in the presence of a
high density electronic current of the order of 1011 A/cm2.
Non-local norm-conserving pseudopotentials were used to
represent the electron-ion interaction of the aluminum nuclei,
with 11 valence and semi-core electrons per atom using a
plane wave basis energy cutoff of 65 Ry. In order to measure
properties such as the electronic dc-conductivity of metals and
plasmas at high temperature, large supercells are needed to
represent thermal disorder and break the spatial coherence of
Bloch waves. A crystalline fcc structure with added random

electronic current

Fig. 3. Streamlines of the electronic current density in the aluminum supercell
100 femtoseconds after establishing the initial current. Current was induced
to flow from left to right at t = 0 and decays with time.

disorder is used for the atomic positions. We use an elongated
supercell of 5× 5× 20 and 5× 5× 54 fcc units cells.

Initial conditions require a strong current be imposed on
the electrons (relative to the ions frame of reference) in order
to observe the relation between the electric field, electronic
current and the decay in time. While such a current can
be induced via an electric field or a phase factor for each
electronic orbital, we use a simpler approach: By assigning
all atoms an initial velocity we simulate a condition that is
equivalent to an initial non-equilibrium electronic current that
is allowed to evolve in time. (A Galilean system of reference
transformation allows us to study the problem in any inertial
reference system.)

We can now compute electronic transport properties such
as the electronic current density (based on the definition
~j =

∑
i

e~
2mi (ϕi

~∇ϕ∗
i − ϕi

~∇ϕ∗
i )), the internal electrostatic

field generated, and the back reaction forces on the ions. By
following the decay of the induced current density (depicted
in Fig. 3) we can obtain the bulk conductivity. The results
are shown in Fig. 4. By fitting the data to an exponential
decay model predicted by Ohm’s Law, we can estimate a
value for the conductivity of 8.2 × 108 S/m (under these
extreme currents). Just for comparison, the experimental value
for the conductivity of aluminum at a temperature of 293 K
is 2.8 × 108 S/m. The observed discrepancy is still being
investigated, but we anticipate improved agreement once we
average over multiple atomic configurations generated from an
adiabatic MD simulation at that temperature.

V. SYSTEM: SEQUOIA BLUE GENE/Q
Blue Gene/Q is the third generation of Blue Gene architec-

tures from IBM. It follows the same design principle as its
predecessors and is built from a large number of low-power
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and homogeneous nodes. In total, the largest installation cur-
rently deployed at Lawrence Livermore National Laboratory
comprises 96 racks with 1024 nodes each. Each node consists
of a single processor with 17 64-bit PowerPC A2 compute
cores running at 1.6 GHz, of which 16 are available to the ap-
plication and the 17th is used for progress threads and system
management functionality. Each core provides four hardware
threads using simultaneous multithreading (SMT), at least two
must be used to achieve full issue bandwidth. This results
in a total of 1,572,864 compute cores or 6,291,456 hardware
threads, providing an unprecedented level of concurrency.

In addition to the main ALUs, each core also contains a
Quad-FPU unit (QPX), which offers four double precision
pipelines that can be configured for scalar FPU processing,
4-wide FPU SIMD, or 2-wide complex arithmetic SIMD. The
Power ISA has been extended to accommodate additional
instructions for the Quad-FPU and the load/store unit supports
multiple alignments, which is an improvement when compared
to previous Blue Gene designs.

The memory system consists of a 16 kB L1 data and 16
kB instruction cache integrated into the core, as well as an
on-chip 32 MB L2 cache with a cache line size of 128 bytes,
which is split into 16 2-MB slices. Groups of eight slices are
connected to one of two on-chip memory controllers, which
provide access to a total of 16 GB per node, or 1.5 PB in the
overall machine. The L2 cache is connected to the compute
nodes through a crossbar interconnect operating at 800 MHz.
Additionally, the L2 cache is multi-versioned to support novel
techniques such as hardware transactions or speculative loop
parallelization. However, neither of these options is used in
this work since we are relying on deterministic and predictable
application patterns, making speculation unnecessary.

All compute nodes are connected through a 5 dimensional
torus network. As the smallest unit of allocation, each compute
card, consisting of 32 nodes, is structured as 2x2x2x2x2 hy-
percube, which can be electrically isolated. Multiple compute
cards are then assembled to create a 4x4x4x4x2 half rack mid-
plane. The complete machine, as built at LLNL, is organized
as 16x12x16x16x2 5D torus. Each torus link is bidirectional
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Fig. 4. Calculated electronic current density as a function of time in
aluminum supercell with random disorder. Red line shows a fit of the current
to the exponential decay predicted by Ohm’s Law.

and provides a peak bandwidth of 2 GB/s in each direction. In
addition, each compute card is connected to an I/O node with
the same architecture. I/O nodes, physically located on top of
the compute racks, provide Infiniband adapters for connection
to the file system and external access.

Blue Gene/Q has a large set of hardware performance
counters that enabled us to measure the sustained performance
of our application directly. Data was collected and reported
using the HPM library provided by IBM. Function calls were
inserted around the main iteration loop to exclude initialization
costs. All communication times and sustained performance
results reported in this paper include only the main iteration
loop, over a minimum of three iterations.

VI. PERFORMANCE RESULTS

We evaluate the scalability and time to solution of Qb@ll
on Sequoia for both 2,000-atom (22,000 valence electrons)
and 5,400-atom (59,400 valence electrons) aluminum. All runs
used 4 MPI tasks per node and 16 threads per task and an
MPI task mapping so that the number of process rows was
a multiple of leading torus dimensions. For each system, the
wall time per iteration of MD with explicit electron dynamics
was measured using both the fourth-order Runge-Kutta and
ETRS exponential propagators described in Section III-A
as well as both the fully-distributed and column-distributed
implementations of the Anl matrix described in Section III-B.
Fig. 5 shows the strong scaling behavior of all systems. At
full scale, the 2,000-atom system had iteration times of 7.5 sec
for the Runge-Kutta propagator and 16.1 sec for ETRS, the
fastest time ever reported for a large metallic first-principles
MD calculation. The 5,400-atom system had iteration times of
53.2 sec and 115.8 sec for fourth-order Runge-Kutta (FORK)
and ETRS, respectively. At smaller node counts, the time
per iteration for the ETRS propagator was consistently about
twice that of Runge-Kutta, making them roughly equivalent
in time to solution once the size of the time step is taken
into account. In nearly all cases, the distributed Anl approach
was faster, with the additional communication being more
than mitigated by the reduction in computation. The one
exception was the full scale 2,000-atom system with Runge-
Kutta integration, as local data sizes became small enough that
the extra computation was faster than the communication costs
of distribution. In nearly all cases, both methods for calculating
Anl had very similar times to solution. The parallel efficiency
of the 2,000-atom runs was 34–38% over a 96-fold increase
in node count, while the parallel efficiency of the 5,400-atom
runs was 70 and 76% over 24-fold and 12-fold increases in
node count, respectively.

The timing breakdown of the main iteration loop is shown
in Fig. 6. Three primary code regions are highlighted: the
calculation of the electronic charge density (”charge”), the
calculation of the Hamiltonian from all terms except the
non-local potential (“hpsi”), and the calculation of energy,
forces and the contribution to the Hamiltonian from the non-
local potential (“nonlocal”). The first two terms, charge and
hpsi, are dominated by parallel 3D Fast Fourier Transforms.
Qb@ll uses a custom 3D Fourier Transform designed to match
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Fig. 5. Strong scaling of molecular dynamics iteration time for disordered
aluminum on Sequoia for both 2,000-atom (22,000 electron) and 5,400-atom
(59,400 electron) systems using either fourth-order Runge-Kutta (FORK) or
Enforced Time-Reversal Symmetry (ETRS). Dashed lines indicate perfect
scaling.

the code’s data layout, with grid points distributed across
process columns in xy-planes. Transposes are handled with
MPI_Alltoallv calls on column subcommunicators, and
the FFTW or ESSL library is used to compute the local
1D transforms. For the case of 4 MPI tasks and 16 threads,
we found that an OpenMP loop over 1D FFTW calls gave
the fastest time to solution. The charge density includes an
MPI_Allreduce over row subcommunicators to accumulate
contributions from the distributed orbitals. The non-local term
is dominated by calls to ZGEMM and DGEMM, with calls to
MPI_Allreduce over row subcommunicators to accumulate
orbital contributions. When the distributed Anl algorithm is
used, “non-local” also includes MPI_Bcast calls to distribute
the blocked data.

The communication profile for the largest runs is shown in
Fig. 7. Because communication was almost entirely limited
to row and column subcommunicators, communication times
scaled well with the number of cores provided the tasks were
mapped onto the torus optimally. Fig. 8 shows the effect of
communication bottlenecks caused by suboptimal task map-
ping, particularly when Anl was fully distributed. Because the
process grid is column-major, row communication suffers the
most from oblivious or poorly-aligned task mapping. As such,
the default task-first mapping (‘ABCDET’) is often the worst
choice, as not only do process columns not align with the
torus dimensions but neighboring rows will be attempting to
do subcommunicator collectives simultaneously on the same
network links. In the case of the 8192 node runs shown in
Fig. 8, the MPI_Bcast time increases by over a factor of
six, dropping the effective bandwidth from from 1.15 GB/s to
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Fig. 6. Timing breakdown of dominant terms in iteration loop time for
(a) 2000 Al atoms and (b) 5400 Al atoms, using the ETRS propagator and
distributed Anl. The “nonlocal” label refers to the time evaluating all terms
related to the non-local pseudopotential (energy, Hamiltonian and forces),
‘other’ refers to the contribution of all other terms in the potential to the
Hamiltonian, and ‘charge’ refers to the calculation of the electronic charge
density from the orbitals.

46.9 MB/s.
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Fig. 7. Comparison of the time spent in different MPI routines for the
original versus distributed computation of the intermediate Anl matrix, using
the ETRS propagator.

The sustained floating-point performance is shown in Fig. 9.
Despite a significant fraction of time spent in communication
and FFTs at full scale, the 2,000-atom system still achieves
3.6-4.0 PFlop/s. The 5,400-atom system had a measured sus-
tained performance of 8.18 PFlop/s with the FORK integrator
and 8.75 PFlop/s with the ETRS integrator, a record for an
application with non-local communication. This corresponds
to 43.5% of peak at full scale, although fractions of peak as
high as 58.7% were observed at 16,384 nodes with the ETRS
propagator.

VII. CONCLUSION AND FUTURE OUTLOOK

We have demonstrated a highly scalable implementation of
non-adiabatic first-principles MD with explicit electron dy-
namics. This capability will enable first-principles simulation
of transport properties, such as electrical and heat conductivity,
electron diffusion under high currents, electronic stopping
power, particularly in the extreme non-linear domain where
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Fig. 8. Communication costs associated with task mapping for the 2000-atom
system on 8,192 Blue Gene/Q nodes. With torus dimensions of 4x4x16x16x2
and a 1024x32 MPI process grid, the ‘ATEBCD’ mapping ensures that
process columns were aligned along torus dimensions. The default ‘ABCDET’
mapping, on the other hand, not only had mismatched alignment, but the
task-fastest ordering resulted in significant resource contention during row
subcommunicator subcollectives.

Fig. 9. Sustained performance of Qb@ll simulations of disordered aluminum
on Sequoia, for both 2,000-atom (22,000 electron) and 5,400-atom (59,400
electron) systems using either fourth-order Runge-Kutta (FORK) or Enforced
Time-Reversal Symmetry (ETRS). The lower right inset shows the corre-
sponding fraction of theoretical peak performance for Sequoia (20.1 PFlop/s),
with the brown dashed line in both plots showing 50% of peak to guide the
eye.

perturbative theories cannot be used. Other interesting avenues
of research include the mechanism of light absorption and en-
ergy transfer within photosynthetic complexes, which requires
simulations of thousands of atoms and many thousands of time
steps [58]. Another interesting problem is that of electromi-
gration [59]. Electromigration is the displacement of the atoms
in a conductor due to the momentum transfer from a current
of electrons. It is an important effect in microelectronics due
to the high current densities and small size of the conductors.

Using explicit electron dynamics, it is possible to simulate the
current and the resulting nuclei-electron interactions, although
long simulation times are required to capture the movement
of nuclei. Studying the nanoscopic features of electromigration
and the factors that control it would be extremely useful for
numerous fields and industries. Understanding the interaction
between electronic currents and nuclei also opens the door to
molecular-sized motors [60]. In addition, recent signal analysis
techniques have been developed to maximize the information
from time resolved properties [61] that may further accelerate
the time to solution of electron dynamics simulations.

More generally, the capability to perform large scale simula-
tions of electron dynamics opens the possibility of simulating
materials that are subject to strong or rapid perturbations, such
as pulsed electromagnetic radiation (e.g. high intensity lasers,
photovoltaic processes), particle irradiation (e.g. protons or nu-
clear decay products) or strong currents (e.g. in hot plasmas).
This has numerous important applications in energy research.

As supercomputers continue to grow more powerful, it is
expected that the trend toward heterogeneity and complexity
will continue as well. Qb@ll’s heavy reliance on general
kernels such as FFTs and matrix multiplication provides a
clear path to take full advantage of new hardware architectures,
including the next generation of GPU architectures.
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